
1

Copyright © 2002 Cycorp

Inference in CycInference in Cyc

• Logical Aspects of Inference
• Incompleteness in Searching
• Incompleteness from Resource

Bounds and Continuable Searches
• Efficiency through Heuristics
• Inference Features in Cyc

This is the final lesson in the Inference Tutorial. It will focus on microtheories
and forward/backward inference.

2

Copyright © 2002 Cycorp

Inference Uses Inference Uses MtsMts for for
ConsistencyConsistency

WorldMythologyMt
•(genls Vampire IntelligentAgent)

•(isa LochNessMonster Reptile)

MainstreamAmericanCultureMt
•(genls Vampire MythologicalThing)

•(isa LochNessMonster MythologicalThing)

In the Mainstream
AmericanCultureMt,
•Vampire is a kind of
mythological thing.
•The Loch Ness Monster is a
mythological thing.

In the
WorldMythologyMt,
•Vampire is a kind of
intelligent agent.
•The Loch Ness Monster
is a reptile.

Another unique feature of the Cyc system is our use of microtheories to deal
with the difficulty of having global consistency in a knowledge base. The Cyc
Knowledge Base does not consist of one single theory that has to be consistent.
As theories get larger and larger, it becomes more and more difficult to
maintain consistency among all of the statements in them. We solved this
problem in our system by not having just one theory; we have a large number
of what we call “microtheories.” These are smaller theories, usually on the
order of a few hundred to a few thousand assertions in each one.

3

Copyright © 2002 Cycorp

MtsMts Inherit from More General Inherit from More General
MtsMts Using Using #$genlMt#$genlMt

UniversalVocabularyMt

MainstreamAmericanCultureMt

UnitedStatesSocialLifeMt

genlMt

HumanActivitiesMt

genlMt

genlMt

genlMt

WorldMythologyMt

This gives us the ability to state that certain microtheories inherit from other
microtheories; we can set up an ontology of theories and have one theory built
upon other theories from which it inherits. It is easier to manage the space of
millions of assertions because we carve them up into smaller sets of assertions
that have common assumptions about them and then we state the relationships
among these theories as a means of organizing them and making them more
modular and reusable. The predicate that we use to state this inheritance
relationship in microtheories is #$genlMt.

4

Copyright © 2002 Cycorp

Inference is performed Inference is performed WithinWithin
MtsMts

UniversalVocabularyMt

MainstreamAmericanCultureMt

UnitedStatesSocialLifeMt

genlMt

HumanActivitiesMt

genlMt

genlMt

genlMt

WorldMythologyMt

ASK in each Mt:
(genls Vampire IntelligentAgent)

Results in each Mt:
• True
• Not Proven

When you perform an inference in our system, you perform an inference in a
particular microtheory. This means that every assertion in that microtheory and
all of the microtheories from which it inherits are “visible” for inference. This
allows the system to maintain an enormous number of potential theories in an
efficient fashion and to support performing inferences in any of them at the
same time.

5

Copyright © 2002 Cycorp

Microtheory #1
P

Inference Uses Microtheories and Inference Uses Microtheories and
InheritanceInheritance

Microtheory #2
Q

Microtheory #3
(P and Q) à R

Microtheory #4
R

genlMt genlMt genlMt

This slide shows a more complicated example of performing an inference
within a microtheory. Imagine four microtheories, represented by the blue
rectangles on the slide. In the three microtheories on top, there are three
assertions. In the first microtheory, there is the assertion we’re calling P. In the
second microtheory, there is the assertion called Q. In the third microtheory,
we have a rule that says that P and Q together imply R. Notice that in none of
these three microtheories do we have a theory from which you can conclude R.
But the fourth microtheory, below, since it has the three microtheories above it
as genMt’s, in effect inherits all of those assertions in one place. So in that
microtheory you now have a theory which can see all of those three assertions
and therefore soundly logically can deduce R. If you were to ask R in any of
the three theories above, Cyc would not be able to prove it. But if you were to
ask it in the theory below, you would be able to prove it.

6

Copyright © 2002 Cycorp

Two Important Microtheories: Two Important Microtheories:
#$#$BaseKBBaseKB and and #$#$EverythingPSCEverythingPSC

#$EverythingPSC :
all Mts are visible
to this Mt

BaseKB

EverythingPSC

Mt1 Mt2 Mt3

Mt4

Mt6

#$BaseKB : always
visible to all other Mts

#$EverythingPSC
can “see” Mt6,
but Mt4 cannot.

There are two microtheories which are worth pointing out as being interesting
in cases like the one depicted on the previous slide.

The #$BaseKB can thought of as the microtheory on top, from which
everything inherits. So this microtheory is always visible to all other theories.
It’s meant to represent the universal theory vocabulary -- everything which is
true, no matter what the theory. In fact, there are now approximately six
microtheories “above” #$BaseKB (an example is #$UniversalVocabularyMt).
But it is still true that all microtheories (except for these six) can see
#$BaseKB (and, as a result, can see the all of the microtheories above
#$BaseKB.

The converse of #$BaseKB is a microtheory called #$EverythingPSC (PSC
stands for “Problem Solving Context”.). This can be thought of as the bottom
of the microtheory ontology, which inherits from every microtheory in the
system. In general, this is not a sound thing to do. But for pragmatic reasons, in
various applications it is often useful to have available a microtheory in which
you can do an ask that will effectively ignore all of the other microtheories.
#$EverythingPSC is a microtheory which has no logically consistent meaning
but has a high practical utility just because it is able to see the assertions in
every microtheory.

7

Copyright © 2002 Cycorp

Placing a New MicrotheoryPlacing a New Microtheory

Mt#1 Mt#2

Mt#3

Mt#6

Mt#0

Mt#7

Mt#5

Mt#10 Mt#11

Mt#4

Mt#8 Mt#9

New Mt

genlMt

genlMt

So, when you’re designing an application, it is useful to introduce a
microtheory into the ontology of microtheories and add some judicious
#$genlMt links to the theories that you want to use. You are, in effect,
constructing the theory you want your application to reason in. This allows you
to control which theories you use in inference and which theories you ignore,
providing another mechanism for filtering out and pruning the space of
possible proofs that you’d make when you’re performing inferences.

8

Inference can beInference can be
Forward or BackwardForward or Backward

Forward Inference:
• Occurs at UPDATE time
• Causes new assertions to
be added throughout the KB

Backward Inference:
• Occurs at QUERY time
• Creates conditional proofs
to be proven by existing facts

New
assertion

Query

New
assertion Conditional

proof

==

Inference in Cyc is not limited to either forward or backward inference. We
support both. Let me describe what we mean by “forward inference” and
“backward inference.”

Forward inference can be considered eagerly concluding additional assertions
as soon as new assertions are added to the system. So forward inference occurs
at update time to the Knowledge Base. In effect, it causes more updates to the
Knowledge Base which then cause more updates, until eventually it ends the
system by allowing operations to complete normally. So, forward inference is
eagerly concluding from the assertions towards new assertions that you may or
may not ever want to use in inference.

The opposite of forward inference is backward inference. Backward inference
occurs at query time and starts from particular queries that you want to ask. It
attempts to prove mechanisms for how the original query would be true in
terms of something else and hopefully you can chain these conditional proofs
back until you eventually hit something which already is true in your
knowledge base and stop the backward search.

9

Copyright © 2002 Cycorp

Forward Inference:Forward Inference:
Strengths and WeaknessesStrengths and Weaknesses

++ --
• larger target for your
backward inference to
eventually hit

• a lot of work at update
time
• wasted effort in
making new conclusions

Forward Inference: At assert time, eagerly
attempt to provide a deductive chain between
what you’re asking and what is already known.

Both forward and backward inference can be thought of as an attempt to
provide a deductive chain between what you’re trying to ask in your query and
what you have already known in your assertions. So, you want to find a
connection between these two? They can be thought of as just two different
approaches to doing inference. One is do it eagerly at assert time and one is do
it lazily at query time.

There are strengths and weaknesses to both. The strength of forward inference
is that it provides a larger target for your backward inference to eventually hit.
But the weakness is that you have to do a lot of work at update time. So if you
have a lot of forward inference, the amount of work you do at update time
could be quite large -- it could get larger and larger and larger as the
knowledge base grows, so that it could eventually reach a point where there is
so much to do at update time that you can’t keep up with the updates. There’s a
limit to how much you can do with strictly forward inference in Cyc, because
the space of potential things you can conclude is truly large and it’s often far
larger than the space of things that you ever want to actually ask the system.

10

Copyright © 2002 Cycorp

Limitation of Forward InferenceLimitation of Forward Inference

New
assertion

Fan-out of new
conclusions/
assertions

Assertions which will never be used

There is a certain size of knowledge base beyond which the
space of conclusions you get in a forward fashion is so large

that it just becomes unwieldy.

In a system with exclusively forward inference, you would have a lot of wasted
space spent on concluding things that you aren’t ever going to ask about,
which in the diagram on the slide is like the two triangles at the bottom which
indicate things you’ve bothered to conclude but are never going to bother to
ask about.

Systems that have exclusively forward inference are fairly common in other
knowledge representation systems. You can think of active databases with
triggers as being ones that are exclusively forward. There are other well-known
representation systems in the AI community: the RETE match is an
exclusively forward-matching strategy. Magic Sets Transformation in the AI
literature talks about how to encode backward inference in an exclusively
forward system. So, there are many systems out there that are exclusively
forward, and the limitation of them is that there is a certain size of knowledge
base beyond which the space of conclusions you get in a forward fashion is so
large that it just becomes unwieldy.

11

Copyright © 2002 Cycorp

Limitation to Backward InferenceLimitation to Backward Inference

Query

Fan-out of
conditional

proofs

Proofs which will never be proven

You can have enormous fan-out in the space of proofs
which you are trying to prove which have no hope of ever

targeting anything that is stated in your system.

Backward inference is another common strategy which is often exclusively
used in other systems. In backward inference you don’t try to remember
anything beyond what is stated to the system and you re-derive things when
asked at query time. Exclusively backward systems are those like Prolog,
where the set of rules and facts are stated to the system ahead of time and
proofs are done exclusively at query time, in a backwards fashion; and if you
want to re-prove it, you have to re-run the proof again.

The downside of an exclusively backward system is the flip-side of that of the
exclusively forward system. You can have enormous fan-out in the space of
proofs which you are trying to prove which are never going to bottom-out at
anything you know about. In this diagram, that is equivalent to the triangles on
the top, which represent queries fanning out from the query that you asked, that
have no hope of ever targeting anything that is stated in your system.

12

Cyc Supports Both Forward and Cyc Supports Both Forward and
Backward InferenceBackward Inference

New
assertion

Query

The benefit of having a system which supports both forward and backward
inference is that with a judicious amount of forward inference you can increase
the target of knowledge that is already represented in the system so that you
have a larger target for your backward inference to hit. In the diagram on this
slide, that is represented by the two approaches judiciously meeting in the
middle. So, you can save all of the wasted space in the triangles by using a
judicious amount of forward inference to expand the target area for your
backward inference to hit.

13

Copyright © 2002 Cycorp

A Subset of the KB is Marked A Subset of the KB is Marked
“Forward”“Forward”

Cyc supports both forward and backward inference, and this is the way it is
used: every assertion in the system is labeled as being either a forward
assertion or not. You can think of all of the forward assertions in the
knowledge base as being a subset of the knowledge base that is labeled
“forward”, and amongst all of the forward assertions, whenever a new
assertion comes in, forward inference triggers and runs exhaustively amongst
just that set. By judiciously choosing a subset of the knowledge base on which
it is worthwhile to perform this forward inference, we can have a good mixture
of the benefits of both forward and backward inference without having to
suffer through the weaknesses of having only one or the other.

Just to give you an idea of what is labeled “forward” in the system, effectively
all GAFs in the system are labeled “forward” and a tiny percentage (probably
around 5 percent or less) of the rules in the system are labeled “forward”. The
kind of rules that are labeled forward are typically those which are either
extremely application-specific or constraints of some kind. The application-
specific rules are in some focused microtheory so that the application knows
that it wants these conclusions done because it is going to target exactly the
results of those conclusions. Things like arities and #$argType constraints (and
some classification rules that conclude things are instances of other things) are
worth doing in a forward fashion -- especially those things that have to do with
canonicalization and well-formedness checking; these are things where you
don’t want to do deep inference at assert time to check those things, so it’s
good to have those things computed in a forward fashion so that you can have
simpler queries in the system to check them.

14

Copyright © 2002 Cycorp

SummarySummary
• Inference Uses Mts for Consistency
• Mts Inherit from More General Mts Using

#$genlMt
• Inference is performed Within Mts
• Two Important Microtheories: #$BaseKB

and #$EverythingPSC
• Inference can be Forward or Backward
• A Subset of the KB is Marked “Forward”

This concludes the tutorial on Inference in Cyc.

